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Optimal particle-mesh algorithms are regarded as those which, for a given computa- 
tional cost, best represent the physics relevant to the evolution of a computer experiment. 
A method to determine for arbitrary interparticle force laws a best combination of 
charge assignment and potential solvers in both momentum and energy conserving 
schemes is presented. Explicit expressions for the errors in forces and harmonic am- 
plitudes together with expressions for influence functions which minimize those errors 
are given. A comparison of optimized versions of the common energy and momentum 
conserving schemes is in Section III, and it is shown how the results of the comparison 
may be used in deciding which scheme to use for some particular purpose. The applica- 
tion of the error minimizing method to PsM schemes for ionic systems and to collision- 
less plasmas is discussed in Sections IV and V, respectively. In Section VI, it is shown 
how the method may be used to obtain finite difference equations for collisionless 
plasma simulations. 

I. INTR~DUC~ON 

In setting up a particle-mesh code to simulate a many body system, we are 
confronted with a wide range of possible charge sharing, field solving, and force 
interpolation schemes and with the limited size and speed of computers. Inevitably 
a compromise must be made between the accuracy of the representation of the 
physical system and computational cost. Apriori knowledge of scale lengths and 
of the phenomena we wish to study gives us guidance as to how coarse our model 
may be. This in turn may be translated into specifying how closely the mesh 
calculated force must correspond to the reference force law relevant to the problem 
in hand. Accordingly, the criterion used in this paper for deciding the optimal 
algorithm is that the best scheme is that which most economically models the 
correct force law to within the accuracy required for realistic results. 

The objective of the work reported in this paper was to find a systematic method 
for designing and evaluating particle-mesh algorithms for arbitrary force laws. 
The basis of the method, namely, quantifying the force in terms of harmonic 
amplitudes and minimizing the errors in the force by making compensating errors 
in the potential, is presented in Section II. It is shown in Section III how such 
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questions as “Are energy conserving schemes better than momentum conserving 
schemes. e” and “Is CIC more cost effective than NGP:” may be answered. The 
application of the method to formulating P3M algorithms [I] for dense ionic 
systems is illustrated in Section IV; there it is shown how optimal combinations 
of charge weighting functions, influence function, cutoff radius and number 
of particles per cell may be found. Section V contains a discussion of the relevance 
of the method to collisionless plasmas. Section VI illustrates how optimal finite 
difference approximations to the field equations may be found and indicates the 
relationship to the Poisson solvers obtained using Lewis’ variational method [2, 31. 

II. ERRORS IN THE MESH CALCULATED FORCE 

We shall consider two classes of force calculating schemes, the so called 
“momentum conserving schemes” and “energy conserving schemes” [4, 51. For 
simplicity, we shall restrict ourselves to l-dimensional examples; the generalization 
to higher dimensions is straightforward apart from the additional consideration 
of potential ditferencing. 

Following Langdon [4, 5,6] we may write the mesh calculated force F between 
two charges of charge q in a periodic system as a fourier series: For momentum 
conserving schemes 

and for energy conserving schemes, 

The notation used in (1) and (2) is as follows. x and X are the particles separation 
and mean position w.r.t. the mesh. Integers p, k and n label configuration space 
values, harmonic amplitudes, and aliases [23], respectively. L = NH is the period 
length, where N is the number of mesh points in one period, and His the cell width. 
X, is an integral number of cell widths: 

x, = PH. (3) 

K and Kg are wavenumbers: 

K = 2nk/L, 

K, = 297/H. 

(4) 

(5) 
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l& and & , C& are harmonic amplitudes of the charge weighting function, the mesh 
electric field Green’s function, and the mesh potential Green’s function, 
respectively. 

l?, = 2 = j) JL W(x) e--iKx dx, (6) 

N-l 

dk = H 1 dpe-iKxp. 
iV=O 

(7) 

The methods of determining the forces implicit in (1) and (2) are computationally 
inexpensive means of approximating the reference force law 

R(x) = & 
0 

k $, BkeiKx (8) 

Thus, a quantitative measure of the quality of a particular scheme is given by the 
mean-squared deviation of the mesh calculated forces, I;, from R: 

Q = &s, dx s, dZ(F(x, E) - R(x))~ (9) 

=P$Z. (10) 

P is the mean-squared deviation of the mesh calculated force from the displacement 
averaged mesh force 

P = As, dx s, dF(F(x, 2) - (F(x, ~)~)2, 

Z is the mean-squared deviation of the displacement averaged mesh force 
<F(x, Y))s , from the reference force. 

(a) Momentum Conserving Schemes 

Substituting (1) and (8) into (9) and (11) and performing the integrations gives 

(14) 
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There are three factors in (13) controlling the magnitude of Q; the aliasing of the 
reference force, the aliasing of the charge weighting function, and the form of the 
influence function a, . The first of these factors arises because, at best, the mesh can 
handle only as many harmonics as there are mesh points. Under conditions for 
physically relevant simulations, the undersampled harmonics of the reference 
force (wavenumbers > n/H) are unimportant, and consequently the arbitrary 
reference force in (13) may, for practical purposes, be replaced by its band limited 
approximation. 

For & band limited, i.e., & = OV 1 k 1 > N/2, 

The dominance of the principal term in the alias sums in (15) may be made 
progressively greater by using higher-order (and hence more costly) charge assign- 
ment schemes. However, the higher-order schemes attenuate both the adequately 
sampled and undersampled harmonics, with the result that Q may be larger for 
higher-order schemes. To offset, this effect we may build compensating errors 
into & : 

Q = Q* is minimum when (aQ/&&) = OVk E [I, (N/2) - l] 

giving an optimum & for a band limited reference force 

and 

Q* = [--&]“2(;;;’ (17) 

(b) Energy Conserving Schemes 

The evaluation of Q, P and C?, for the energy conserving schemes follow in 
exactly the same manner as for the momentum conserving schemes. For a band 
limited reference force we have 
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optimal ek 

Q* = (--6-)2 2 (N$-l K2 I Ok I4 

’ A, I2 (’ - (Cn 1 Ok,, 12)EnKn2 1 ok,, 1”) 
(21) 

k=O 

III. A COMPARISON OF Q-MINIMIZED SCHEMES 

Three useful quantities for measuring how well an algorithm represents various 
wavelengths are Qk+, Pkt, &+. Qkt is the fractional mean-squared deviation of the 
mesh calculated amplitude of the kth harmonic from its true value, Pkt is that 
part of Qkt due to the fluctuation of the interparticle force under mesh displace- 
ments, and &+ is the part of Qkt due to deviation of the displacement averaged 
mesh force from its true value. From Eqs. (17) and (21) we have 

Qkt = 1 - (I Ok i4/j c 1 Okk, I2 1”) 

for momentum conserving schemes, and 

Qk+ = 1 - [Ka 1 ok 14/(x / Ok,, I’)(; Kn 1 Ok,, I’)] 
?I 

(23) 

for energy conserving schemes. Corresponding expressions for Pk+ and Z,+ may be 
obtained using Eqs. (lo), (14), (16), (19), and (20). Note that the quantities Qkt, 
Pg+, and zk+ are independent of both the form of the force law and the number of 
mesh points used. 

The reSdtS of the UUUIeriCal WalUatiOU of Qk+, Pk+, and zk+ for some Q-mini- 
mized schemes are summarized in Figs. 1-3. Schemes considered are momentum 
conserving ones (dk defined by Eq. (16)) using NGP, CIC, and TX charge weights 
[7-lo] and energy conserving ones (& defined by (20)) using linear interpolation 
(ELI) and quadratic splines (EQS), respectively [2, 5, 11, 181. 

Figure 1 shows the percentage r.m.s. errors in the harmonic amplitudes as a 
function of wavenumber. Bearing in mind that these curves give the minimum 
possible errors for each of the charge-sharing/force-interpolation combinations and 
are independent of the interparticle force law, they provide an unbiased comparison 
between the various schemes. As is to be expected, the curves indicate that smaller 
wavenumbers are better represented than larger ones, and that the curves are 
ordered in cost/quality, with both energy and momentum conserving schemes 
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showing comparable errors. The breakdown of the errors in Figs. 2 and 3 show that, 
except for very short wavelengths, fluctuations are the major contributor to 
(Qkt)1/2. with the ratio of (Plct)l12 to (Zk+)1/2 increasing with the order of the scheme, 

0 .l .2 .3 .I. * .5 
N 

FIG. 1. The minimum r.m.s. percentage deviation of the kth harmonic of the mesh calculated 
force from the kth harmonic of the reference force as a function of wavenumber for an arbitrary 
band limited force law. NGP, ELI, CIC, EQS, and TSC refer to the charge assignment/f6rce 
interpolation schemes relevant to each curve. 

N 

FIG. 2. The r.m.s. percentage deviation of the kth harmonic of the mesh calculated force 
from the kth harmonic of the mesh displacement averaged force vs wavenumber for the influence 
function employed to obtain the curves in Fig. 1. The curves are labeled as in Fig. 1. 
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and decreasing with increasing wavenumbers. Note the relatively small difference 
in errors between NGP and ELI and between CIC and EQS schemes, whereas they 
show quite a large difference in cost per particle per timestep. 

FIG. 3. The r.m.s. percentage deviation of the kth harmonic of the displacement averaged 
mesh force from the kth harmonic of the reference force as a function of wavenumber for the 
cases shown in Figs. 1 and 2. 

The value of the method and results presented in this and the previous section 
are that (i) the method provides a prescription which gives the best influence 
functions (see Eqs. (16) and (20)) to go with a particular charge sharing scheme for 
both energy and momentum conserving schemes (cf. Lewis’ approach for energy 
conserving schemes [2,3]) and (ii) the results enable the most cost effective scheme 
for a particular role to be chosen. To illustrate the second point, let us consider 
an example : 

Assume that we want to simulate a system of length L = 100X, (X, = Debye 
length), and that we require the error in all wavelengths greater than 2&, to be less 
than 10%. Which of the five schemes discussed above is the cheapest in terms of 
cost per particle per timestep ? 

Drawing a line parallel to the abcissa through (Qkt)l12 = 10 % in Fig. 1, we 
obtain the maximum k/N = (k/N) II,,% for the 10 % condition to be met. Equating 
the wavelength corresponding to (k/N) ll,,yo to 2hD gives the minimum number of 
mesh points for which the criterion can be met: 

N = 5WklN) Ilo% . (24) 
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Assuming that two FFT are used in determining the potential or field as appropriate 
from the charge, then the operation count, Ti, for scheme i will be approximately 
of the form 

Ti = aam + BNi log, Ni . (25) 

01~ is a measure of the number of operations per particle per timestep in the charge 
sharing, force interpolation and time-stepping parts of the calculation loop, m is 
the number of particles, and Ni is the number of mesh points. The breakeven 
number of particles, m, between scheme i and scheme j is given when Ti = Ti : 

m = -/3[Ng log, Ni - Nj log, Nj]/(a, - ai). (24) 

Using the real arithmetic operations count to estimate a and /3, we have for 
TSC-EQS, ESQ-CIC, CIC-ELI, and ELI-NGP, dol = ai - CX~ = 5, 6, 3, 4, 
respectively, and fi = 5 [7]. Inserting these values into (26), and using (24) and 
Fig. 1 to obtain N, we find the ranges of m over which each particular scheme is 
most economical: 

NGP: m > 8000 

ELI: NONE 

CIC: 325 < m < 8000 

EQS: NONE 

TSC: m < 325 

Nowhere do the energy conserving cases prove economical. The requirements 
on the particle numbers for the system to behave like a Vlasov fluid i.e., mX,/L> 1 
[6, 12, 13, 141 precludes the regime where TSC is cheapest, and the fact that NGP 
requires at least five times the number of mesh points that CIC needs (from (24) 
and Fig. 1) militates against the large number of particles required for NGP to be 
most economical. For this example, Q-minimized CIC with N = 256 is the most 
economial. Additional economy and an increase of heating and collision times 
may be achieved by setting & to zero for the poorly represented short wavelengths 
(X < 2hD for this case) [15, 161. 

IV. Q-MINIMIZED P3M SCHEMES 

Until recently, dense ionic systems were simulated using the simple, but com- 
putationally expensive, direct particle-particle sum to obtain interparticle forces. 
A new technique suggested by Hackney [l], which reduces the force calculation 
operation count from dependence on the square of the number of particles to a 
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linear dependence on the number of particles, is to express the interparticle forces 
forces as the sum of the mesh part, E, and the direct sum part FB.*. : 

F = E + I5.r. , (27) 

where the short range direct sum contribution is over particles of separations less 
than some cutoff value a. The scalelength in systems for which P3M is appropriate 
is of the order of ion separations, the particles are identified as molecules and the 
strong short range forces are such that the potential and kinetic energies are 
comparable. Consequently, we require a mesh force, E, which accurately models 
the total force, F, for separations greater than a and goes smoothly to zero for 
small particle separations. Let us now use the simple case of a Coulombic force 
in one dimension to show how the Q-minimizing method may be advantageously 
employing in finding a suitable algorithm for determining E: 

The reference force, R(x), for the mesh calculated force, E, may, by Gauss’ Law, 
be regarded as the force between finite sized particles of width u/2 [12, 131. The 
harmonic of R are 

I& = (-iH/K) 1 s$& 12, (28) 

where 9, is the kth harmonic of the decomposition of the density distribution of 
the charge in the particle: 

9, = jL dx S(x) e-iKx. 

Note that since S(x) is nonzero only for the finite range 1 x I < a/2 of x, Sk is non- 
zero for all k, implying that I?, is not band limited for the Ikite sized particle. 
However, by matching higher and higher derivatives of the force at 1 x 1 = a, we 
obtain progressively faster decays of the amplitudes I& with k: 

Specifying continuity of the mesh force, R(x) and its first derivative at x = a 
gives the “top-hat” shaped cloud (shape Sl): 

i 

1 
S(x) = a ; I x I < 42, 

0; otherwise, 
(30) 

Sk = [sin(Ka/2)]/(Ku/2). (31) 

Specifying continuity of R(x), R’(x), R”(x), R”‘(x) at x = a gives the triangular 
shaped cloud (shape S2) 

S(x) = 
I 

- I x I + (42) ; 
(42)2 

I x I < 42, 

0; otherwise, 
(32) 

Sk = [sin2(Ka/4)]/(Ku/4)2. (33) 
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Similarly, progressively higher-order fitting of derivatives yields reference cloud 
shape Sn: 

S, = sinc”(Ka/2n); n = 1, 2, 3, 4 ,.... (34) 

To obtain the full benefit of the faster decay of 3, with k for higher n schemes, 
greater cutoff radii, a, must be employed to offset the increase of n in the 
denominator of the argument of the sine function in (34). Computational cheapness 
dictates that a shall be as small as possible, so only the small n schemes prove 
practical. 

Results for the n = 1 (Sl) and n = 2 (S2) cloud shapes are presented in Figs. 4 
and 5. Reference forces defined by (28), (31), and (32) are used to obtain Q for 
Q-minimized schemes. The labels NGP, CIC, and TSC again refer to the charge 
weighting/force interpolation functions, and the curves labeled MIN, the differences 
between the band limited and exact reference force, give the minimum error that 
can be achieved in the mesh force. Plotted are (Q+)l12, the root mean-squared 
deviation of the mesh force, E, from the reference force, R, expressed as a per- 
centage of the r.m.s. force between point particles vs the cutoff radius in units of 
cell widths. Values given are for N = 128; for other choices of N, multiply values 
on the ordinates by (128/N)1/2. 

.Ol ! 1 
0 1 2 3 4 5 Q 6 

H 

FIG. 4. The minimum r.m.s. deviation (Q ) + l/l, of the mesh calculated force from the top-hat 
(Sl) shaped particle reference force as a function of the cutoff radius. NGP, CIC, TSC refer to 
the charge assignment/force interpolation scheme. MIN labels the curve arising when a band 
limited charge assignment scheme is used. The curves shown are for N = 128. (Q+)‘/* is expressed 
as a percentage of the r.m.s. force between two charged planea. 
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0 1 2 3 L 5a6 
H 

FIG. 5. The minimum r.m.s. deviation, (Q ) + lj2, of the mesh calculated force from the triangular 
shaped particle (S2) reference force as a function of cutoff radius for N = 128. Labeling and 
normalization are the same as for Fig. 4. 

Comparing Fig. 4 and 5, we see that the smallest MIN(Q+)‘/” is given by the 
Sl reference cloud shape for a/H small, with the crossover to the S2 shape ocurring 
at a/H N 2.3. A similar crossover from Sl to S2 occurs for TSC at a/H N 4, 
although no such changeover appears for NGP and CIC in the range of (a/H)(c 12) 
investigated. Note that for the TSC/Sl example (Qt)li2 remains within a factor 
two of the minimum possible value, indicating that no significant gain will be 
achieved by using higher-order schemes. A larger disparity between the values 
of (Q+)l12 for the TSC scheme and the MIN(Qt)li2 is apparent for the S2 reference 
force (Fig. 5). In this case, using higher-order schemes than TSC may prove 
profitable, especially for a/H > 4. 

To find the best scheme, we proceed in a similar manner to that illustrated in 
the previous section. For example, suppose we require a scheme which will give a 
coulombic inter-particle for with an r.m.s. error of less than 0.1 %. 

The operation count for the P3M scheme is of the form 

T = arm + /IN log, N + ymr(m/N), (35) 

where CL, /3, m, and N are as defined in Section III, r = a/H, and y is the operation 
count per particle for the short range correction. At the optimum number of 
particles per cell, 

(m/Nh = [P log2 Wyr11’2, (36) 
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the last two terms in (35) are equal, and the operations per particle per timestep 
is approximately constant: 

I’ = T/m = 01 + 2[yr/l log, N]1/2. (37) 

From Figs. 4 and 5, it is clear that NGP is impractical. The breakeven between 
CIC and TSC is found by eqating r for the two schemes: 

(rcIcY’z - hsCY’2 = (%sc - waw3 log2 w2. (38) 

Again using real arithmetic operation counts, we find aTsc - cycIc = 11, /3 = 5, 
y N 15 and, for N = 128, log, N = 7. Inserting these values into (38), we find 
that rCIC must be less than 5 in order that CIC be more economical than TSC. 
It is clear from Figs. 4 and 5 that it is not, indicating that TSC should be used. 
Finally, we must decide which reference force to use. Both Sl and S2 give -0.1 % 
error at r = a/H = 4. However, from Fig. 6, we see that fluctuations for the Sl 
mesh force are less than for S2, and hence Sl is to be preferred for its better energy 
conservation properties. 

0 1 2 3 4 5 g 6 
H 

FIG. 6. The r.m.s. deviation of the mesh calculated force from the displacement averaged 
mesh force expressed as a percentage of the force between two charged planes versus cutoff 
radius. The curves correspond to the examples of (Q+)l/” given in Figs. 4 and 5. 

We now have all the information required to set up the optimal 1 - D P3M 
code to give coulombic forces with less than 0.1 % error: TSC charge sharing, the 



OPTIMAL PARTICLE-MESH ALGORITHMS 13 

optimal number of particle per cell (Eq. (36)), an Sl reference force with cutoff 
radius a = 4H, and an influence function given by 

-iH2 cot x cos2 x cos2 2x[l - sin2 x + (l/5) sin4 x + (l/31 5) sin6 x] 
2(1 - sin2 x + (2/15) sin4 x)” 2 (40) 

where 
x = rrk/N = KH/2. (41) 

In addition, if FFT are not used to obtain the field from the charge, then (40) may 
be fourier transformed to give the optimal difference approximation to the field 
equation. 

V. Q-MINIMIZED PLASMA SIMULATIONS 

Collisionless plasma simulations involve a compromise between dispersive 
properties, collision times and heating times within the constraints of the finite 
computer resources. The best compromise is that which, for given computational 
cost, most accurately emulates the behavior of a Vlasov fluid over the spatial and 
temporal scales of interest. Factors affecting the compromise are (i) the paucity of 
particles, which enhances collisional effects [14, 171, (ii) the band limiting effect 
of the mesh, which suppress short wavelengths and reduces collisional effects [6, 121, 
(iii) undersampling of the density, leading to increased heating rate and modified 
dispersion [4-71, and (iv) the smoothing effect of interpolation [13]. 

Fortunately, (i) and (ii) are partially cancelling. Using the most cost effective 
scheme (cf. Section III) and discarding unimportant wavelengths minimizes the 
unwanted consequences. Aliasing (point (iii)) can have disastrous effects [19], but 
provided that the characteristic wavelength, h, of collective motions in the system 
is such that H < X < L, the resulting mesh-induced fluctuations of wavelengths 
of importance are quite small (cf. Fig. 2). The many short wavelengths of little 
importance to collective behavior present when H < X < L should be suppressed 
to improve collision and heating times (see [16] for proof of the benefits of this 
truncation). 

The wavelengths which are retained may be treated using the Q-minimizing 
method. The dispersion relation for an electrostatic Vlasov plasma is [23] 

(42) 
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whereas that for a momentum conserving particle-mesh plasma is [4] 
II 

1 = -U$$ j c f;(v) dv ; -!s . 
n 

(43) 

In the long wavelength limit (rk/N = KH/2 < l), (43) reduces to 

1 = _ K&c I 0, I2 -up2 h’(v) dv 
iH I I - o” + 0 (($)2m+1)l. K (W 

where 

i 

1 for NGP, 
m= 2 for CIC, (45) 

3 for TSC, 

(In (44) the leading error term becomes O((nk/N)2m+2) for a stationary symmetric 
distribution). 

Choosing & to minimize Q (Eq. (16)) gives 

= 1 + 0((mk/N)2m). (47) 

Comparing (44) and (47) shows that the leading error is in the inffuence function 
for Q-minimized momentum conserving schemes. (Similar results may be obtained 
for the energy conserving schemes). Better long wavelength dispersion can be 
obtained by setting 

c& = -iH(I 0, I”/K). (48) 

If FFT are used to solve the field equations, then the latter choice, (48), may be 
advantageous, although the smaller fluctuations (and hence better energy conser- 
vation) given by the Q-minimized schemes for marginally poorer dispersion may 
outweigh any such advantage. Further research is needed to resolve this fine point. 
Here, it is assumed that Q-minimized schemes are used in view of their wider 
applicability. 

The advantage of Q-minimized schemes over some other plausible schemes is 
illustrated by Fig. 7. If we assume that the desired response to small amplitude 
disturbances in the range of wavelengths retained by the computer model is given 
by (42), then a comparison of different algorithms is provided by the relative 
deviation of the harmonic amplitudes from the values required by (42). Plotted 
in Fig. 7 is the percentage r.m.s. errors in the harmonic amplitudes as a function 
of wavenumber for four l-dimensional CIC schemes. The labeling of the curves 
indicates the method of determining the field from the charge. 
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FIG. 7. The r.m.s. percentage deviation of the mesh calculated harmonic amplitudes from the 
harmonic amplitudes of a coulombic force law for four CIC particle mesh schemes. See text for 
details of labeling of curves. 

(i) The Poor Man’s Poisson solver (PMP): 

2HE, = $,-I - #,+I > 

$le = p^d%K2 

(a 1-D analog of the scheme of Boris and Roberts [ 151). 
(ii) The finite difference approximation (FDA): 

2HE, = $,-I - $,+I 3 

#,-I - 242, + +,+I = --P~~H~IQ 

(a 1-D analog of Birsall and Fuss’ scheme [S]). 
(iii) Direct k-space solution (KSP): 

Ek = -&/qK 

(cf. the field solution in the dipole approximation scheme [21]). 
(iv) The Q-minimized scheme (OPT): 

J% = &%I@, 

where a, is given by (16). 

(49) 

(50) 

(51) 

(52) 

581/18/1-z 
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The errors built into the influence function, L& , by scheme (iv) offset the errors 
arising in charge sharing and force interpolation to the extent that the overall errors 
are typically a factor of three smaller than those given by (i)-(iii). Larger improve- 
ments are obtained for higher-order charge sharing schemes, as the limiting factor 
is the relative strengths of the principal modes and aliased modes contributions 
to harmonic amplitudes. 

VI. FINITE DIFFERENCE EQUATIONS 

In the previous section we saw that Q-minimized schemes enable good dispersive 
properties to be obtained for long wavelengths, with truncation of k-space (cf. [16]) 
being used to control collision and heating times. It will now be shown that if we 
sacrifice the harmonic by harmonic fine tuning available when FFT are used to 
solve the field equation, then finite difference equations corresponding to Q-mini- 
mizing influence functions may be found. 

(a) Momentum Concerving Schemes 

The Q-minimizing influence function for a coulombic force between finite-sized 
particles is from (28) and (39), 

where [5] 
Ok = (sin(&/N)/7rk/iV)~, 

for NGP, 
for CIC, 
for TX. 

Using the identity [20] 

-& cosec2 x = C 
n (x +‘?iny+~ 

(53) 

(54) 

enables (53) to be written in terms of trigonometric functions. The finite difference 
equations are then obtained by transforming 

,??* = &i&,H. (56) 

For example, the best NGP approximation to the force between point particles 
(& = 1) is given when 

d, = (-iH2/2) cot(&/J’J). (57) 
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Finite difference equations corresponding to (57) are 

+,+I - 296 + 94-1 = -~rff~/~ 3 

Es = (L-1 - +,+dPH. 
(58) 

The influence function (57) gives a multiplying factor in the dispersion relation 
w of 

-Kc& 1 ri, I”/iH = 1 + o((~k/N)~). (59) 

Dispersive properties of the NGP model may be improved at the cost of stronger 
fluctuations by minimizing 2 rather than Q, giving 

& = (-iH2/2)[cot(&/N)]/[(l - $ sin2(&/N))], (60) 

and 
--Kc& 1 ok I”/iH = 1 + O((?rk/N)*). (61) 

Smoothing may be introduced by using specific charge shapes in (53). Convenient 
choices are given by (31) and (33) with a equal to an integral multiple of the cell 
width, H. The advantages of this procedure are that problems with self forces and 
nonconservation of momentum are avoided, and that the effect on dispersive 
properties may be readily evaluated. 

(b) Energy Conserving Schemes 

Finite difference equations which minimize Q or Z, and introduce smoothing 
may be obtained in the manner indicated above. In particular, the influence 
function, ek , which minimizes Q for the point particle reference force is 

& = H/c Km2 I G,, 12. (62) 
7% 

Equation (62) is identical to Lewis’ prescription for the potential solver [5], i.e., 
Lewis’ variation method applied to the approximate Lagrangian is equivalent to 
minimizing the r.m.s. error in the force. That this should be so may be seen by 
writing Q for energy conserving schemes in terms of the approximated Lagrangian, 
L, for quasistatic fields: 

where (see (49) in [2]) 

(63) 



18 J. W. EASTWOOD 

p is the (exact) charge density, and & is the mesh calculated potential 

Since the first term in (63) is independent of the mesh potential, applying 
Hamilton’s Principle to (64) gives the same Euler-Lagrange equation, and hence 
the same Poisson solver, as minimizing Q does. 

As noted by Langdon [5], the potential solver specified by (62) does not give the 
best long wavelength dispersive properties. Minimizing 2 to obtain G, , 

improves the dispersive properties (cf. momentum conserving schemes), but, again, 
only at the expense of increasing P. 

VII. CONCLUDING REMARKS 

One-dimensional examples have been given in this paper to substantiate the 
worth of the systematic approach to obtaining good codes. The method is even 
more valuable in two and three dimensions, where the wider variety of schemes and 
more severe consequences of computer limitations would otherwise magnify the 
difficulty of the choice of algorithm. The generalization of the expressions for 
Q, P, 2, etc., to higher dimensions presents no serious problems. Forces, wave- 
numbers, and alias numbers are replaced by their relevant vector quantities and 
sums by double or treble sums as appropriate. Additional factors may be readily 
included. For example, optimal combinations of Poisson solver and field 
differencing for momentum conserving schemes may be found by suitably 
constraining the electric field influence function. Interlaced schemes [24] may be 
treated by modifying the expression for the mesh calculated force (Eqs, (1) and (2)). 
Effects of code optimization (such as use of word packing, efficient buffering, integer 
arithmetic, and machine coding [7, 15, 16, 211) on the relative economics of the 
various schemes may be handled by adjusting the coefficients in the timing 
equations. 

The author rejects as inadequate the criterion that if you can find one scheme 
which is grid insensitive, then it would be best for all purposes. Such a viewpoint, 
in extremes, would lead to the conclusion that noninteracting particles or meshless 
systems are best, and, in moderation, may lead to orders of magnitude more 
computing than is necessary to achieve the desired ends (cf. Section III). An optimal 
scheme, in the sense of the criterion proposed in this paper, is the one which is 
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most economical in obtaining less than a given mean-squared deviation from the 
reference value. 

In P3M calculations, it is clear that minimizing Q gives the physically most 
desirable result. Harmonic amplitudes which are severely corrupted by aliasing 
are suppressed in the mesh part of the force, and replaced by adjusting the tabulated 
short range correction. The overall effect is to accurately and economically represent 
the prescribed forces between the ions. The role of the reference force in this type 
of scheme is to provide a systematic method of adjusting the balance between the 
mesh and short range part of the calculation. 

The reference force has a direct physical meaning in the context of collisionless 
plasma simulations. Landau damping invlasov plasmas and bandlimiting in particle 
mesh models both have the effect of suppressing short wavelengths, a feature which 
may be conveniently interpreted by ascribing a finite size to the particles [13]. 
The intrinsic shape of the finite sized particle is of little relevance provided that it 
leads to the required physical behavior. A “wide” particle (radius > X,) increases 
collision times [4, 12, 16, 171 at the expense of dispersive properties, and vice versa 
for “narrow” particles. Changing the reference force alters the balance between 
dispersive and collisional effects, and allows the effective charge shape to be 
estimated. 

In Section VI, it was shown that the finite sized particle reference force gave 
smoothing prescriptions for altering the effective particle width (a feature which 
Lewis could have, but did not, include in his examples [2]). However, if FFT are 
used to solve the field equations, the greater freedom in the form of the approximate 
field equations gives the more useful result that long wavelength dispersion and the 
collision effects can be treated independently. Errors in the harmonic amplitudes 
of long wavelength are minimized by adjusting the influence function, and collision 
and heating times are varied by truncating k-space. This approach gives peculiar 
effective charge shapes, such as the sine-shaped particle which corresponds to the 
band limited coulombic reference force, but provides a good description of Vlasov 
plasmas (the sine function is defined in [22, Chap. 41). Again, no one scheme is best 
for all purposes. For short computations, many harmonics may be retained at 
the expense of collision and heating times, while for long computations, some of 
the harmonics may be traded off to reduce the unwanted kinetic effects. Indeed, 
in the latter case, the effective width of the finite sized particle may be made greater 
than the Debye length without affecting the collective response of the model 
to long wavelengths. 
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